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Models for the transport of passive scalar in turbulent flow were investigated using 
databases derived from numerical solutions of the NavierStokes equations for fully 
developed plane channel flow, these databases being generated using large-eddy and 
direct numerical simulation techniques. Their reliability has been established by 
comparison with the experimental measurements of Hishida, Nagano & Tagawa 
(1986). The present paper compares these simulations and calculations using the 
Nagano & Kim (1988) ‘ two-equation ’ model for the scalar variance (k,) and scalar 
variance dissipation (ae). This model accounts for the dependence of flow quantities 
on the Prandtl number by expressing eddy diffusivity in terms of the ratio of the 
timescales of velocity and scalar fluctuations. However, the statistical analysis by 
Yoshizawa (1988) showed that there was an inconsistency in the definition of the 
isotropic eddy diffusivity in the NaganwKim model, the implications of which are 
clearly demonstrated by the results of this paper where large-eddy simulation and 
direct numerical simulation (LES/DNS) databases are used to compute the 
quantities contained in both models. An extension of the Nagano-Kim model is 
proposed which resolves these inconsistencies, and a further development of this 
model is given in which the anisotropic scalar fluxes are calculated. Near a rigid 
surface, a third-order ‘anisotropic representation ’ of scalar fluxes may be used as an 
alternative model for reducing the eddy diffusivity, instead of the conventional 
‘damping functions’. This model is similar but distinct from the algebraic scalar flux 
model of Rogers, Mansour & Reynolds (1989). A third aspect of this paper is the use 
of the LES/DNS databases to evaluate certain coefficients (those for modelling the 
pressure-scalar gradient terms) of another model of a similar type, namely the 
algebraic scalar flux model of Launder (1975). 

1. Introduction 
Turbulent diffusion of passive scalar is an important, complex field in science and 

engineering, and following increases in computation abilities of computers, it  has 
become possible to analyse this type of diffusion by numerically integrating the 
governing equations. The most commonly adopted methods involve the use of the 
k+ model which expresses the eddy diffusivity of the scalar field by prescribing the 
turbulent Prandtl number (PrJ, where in this model k denotes the turbulent kinetic 
energy and a is the dissipation rate of k. However, these methods subsequently need 
an empirical formula for Pr,, lack application universality, and do not include a 
molecular Prandtl-number (Pr) dependence. 

Another approach reported by Nagano & Kim (1988, hereinafter referred to as 
NK) employed scalar variance (k,) and scalar variance dissipation (a,) equations, and 



406 K .  Horiuti 

prescribed the eddy diffusivity using these quantities, thereby avoiding phenom- 
enological assumptions for Pr,. This proposed model was tested in both a flat-plate 
boundary layer and at a thermal entrance region of a pipe, yielding satisfactory 
results for a wide range of Pr (0.1-10000). In defining eddy diffusivity, a timescale 
of scalar fluctuation must be specified, with this scale usually being determined by 
combining the dynamic timescale expressed by k and 6 and the scalar timescale 
expressed by k, and €8. The resulting eddy diffusivity can then be rewritten as the 
product of the conventional eddy viscosity of the velocity field and the ratio ( r )  of 
these two timescales taken to the exponent p .  NK determined that the exponent 
should be -4, whereas Yoshizawa (1988) statistically found that it should be equal 
to -2. The difference in the exponent value led to the present study which focuses 
on resolving this inconsistency. 

Several techniques for turbulent-flow numerical simulations are presently in use, 
i.e. Reynolds-averaged numerical simulations (RANS), large-eddy simulations 
(LES), and direct numerical simulations (DNS). In RANS, averaging is done in both 
space and time over several turnover timescales of large eddies, whereas in LES it is 
done in scales encompassing grid intervals (subgrid scales (SGS)). DNS on the other 
hand, resolves all the scales up to or close to the Kolmogorov dissipation scale and 
uses no turbulence models, although its applications have been limited to simple 
geometries, e.g. plane channel flow, a t  relatively low Reynolds numbers (Kim, Moin 
& Moser 1987). However, further assumptions are required in LES and RANS to 
relate the correlations in the unresolved scale to the resolved scale variables, with 
their assessment having been performed using more elementary levels of numerical 
simulation data. Clark, Ferziger & Reynolds (1977), Bardina, Ferziger & Reynolds 
(1980), Piomelli, Moin & Ferziger (1988), and Horiuti (1989) employed LES 
turbulence models which were directly tested by a comparison with DNS data. 
Improved models, having a higher correlation with DNS data, have been studied in 
a posteriori tests which incorporate these models into actual LES computations, 
where significant improvements were obtained in turbulence statistics. In addition, 
a DNS database has been used to evaluate RANS models (Mansour, Kim & Moin 
1988). Since channel flow DNS analysis has only been done a t  low Reynolds numbers, 
only a small fraction of the logarithmic layer is discernible in the mean velocity 
profile (Kim et al. 1987), with results indicating that it is a suitable technique to 
evaluate the models for simulating the near-wall region. LES is applicable at higher 
Reynolds numbers where extensive tests of RANS models in the logarithmic layers 
are possible using the LES database. The DNS database is, however, more reliable 
in evaluating the higher-order statistics required for the evaluation of turbulence 
models. 

The major objective here is to assess the two-equation model and determine the 
exponent p using the LES and DNS databases for plane channel flow. To generate 
the LES database, models are incorporated which approximate the cross-terms 
between the grid scale (GS) and SGS velocity components terms arising during 
filtering of the Navier-Stokes equations. The Bardina model, based on a scale 
similarity hypothesis (Bardina et al. 1980), was adopted for the models of cross-terms 
because previous direct tests of LES models in plane channel flow (Piomelli et at?. 
1988; Horiuti 1989) revealed that the Bardina model provides an accurate 
approximation for the cross-terms, and also because neglecting them degrades the 
computation. The cross-terms in the filtered scalar transport equations, i.e. the 
correlation between the GS velocity and SGS scalar components and vice versa, have 
been approximated here in the same manner, with subsequent database reliability 
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being tested by comparing results with experimental measurements of Hishida, 
Nagano & Tagawa (1986). By including these models for the cross-terms, overall 
statistics were significantly improved, e.g. the mean scalar profile. It is not yet clear 
whether the LES database statistics are reliable for the evaluation of turbulence 
models, thus three simulations were accordingly conducted : two LES cases using 
different grid resolutions and one DNS case. Additionally, two methods were tested 
which drive the passive scalar field. When these LES/DNS databases were used to 
compute the quantities contained in the two-equation models, it was revealed that 
two-equation models based on either p = - 2 or -a are quite inaccurate in the region 
where r varies considerably, and that a p = 1 - 3 model yields better results. 

As an inevitable consequence of using isotropic eddy viscosity/diffusivity 
representations, conventional two-equation models fail to predict the anisotropy of 
Reynolds stresses and scalar fluxes. Leslie (1973) devised a representation of 
anisotropy of scalar fluxes to circumvent this drawback, and Yoshizawa (1988) 
extended Leslie’s work by showing that this representation yields a good 
approximation for the anisotropy of scalar fluxes in comparison with the 
experimental measurements of Tavoularis & Corrsin (1981). Recently, Rubinstein 6 
Barton (1991) applied renormalization group theory to compute anisotropic 
corrections to eddy diffusivity, and then derived similar anisotropic models. 
Similarly to isotropic eddy diffusivity , anisotropic representation of scalar flux also 
involves the exponent p ,  with corresponding evaluation of p being done via these 
fluxes. The second-order models adopted by Newman, Launder & Lumley (1981) and 
Elgobashi & Launder (1983) provide an alternative approach to model an anisotropy 
of scalar fluxes by avoiding the empirical assumption on Pr,. These models directly 
solve the transport equations of scalar fluxes, being further simplified by Gibson & 
Launder (1976) to yield algebraic relations among these fluxes. The resulting 
algebraic scalar flux models (AFM) were tested by Rogers, Mansour & Reynolds 
(1989 hereinafter referred to as RMR) using the DNS databases for homogeneous 
shear and plane channel flows. Horiuti (1990) reported that third-order repre- 
sentation of anisotropy may be used as an alternative method for calculating the 
Reynolds stresses near the wall. This can replace the conventional Van Driest 
damping function (Van Driest 1956) which is commonly used in k-e models. The 
present paper discusses the use of third-order representation of anisotropy for scalar 
fluxes to reduce the eddy diffusivity near a rigid surface. Its similarities and 
differences with AFM (RMR 1989) is further discussed. It is known that all turbulent 
models must be tested by incorporating them into actual computations, however, the 
present paper primarily deals with the tests of models by comparing their correlations 
with numerical databases. 

The governing equations and selected LES turbulence models are briefly described 
in $2, whereas $3  presents the two-equation model for passive-scalar diffusion by 
NK, and shows several database profiles which demonstrate the reliability of 
LES/DNS databases. The two-equation model is subsequently assessed in 84 using 
the generated databases, and a new model that mitigates the drawbacks in the 
previous models is proposed. A critical comparison with AFM is then made in § 5 ,  
with $6 containing a summary and conclusions. 

2. The governing equations/LES models 
Incompressible channel flow is considered using the NavierStokes, continuity and 

passive-scalar transport governing equations, with the LES basic equations for the 
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filtered velocity components tii ( i  = 1,2 ,3) ,  the filtered pressure p, and the filtered 
scalar e, being 

atit a a aji i 

at ax, ax, axi Re 
- + - (tii ti,) = --Ti, - - + - Atii + 28,,, 

where 13, is the Kronecker delta symbol, Q0 the volumetric scalar source term, and 
K the scalar diffusivity. Equations (1)-(3) and their variables are filtered by applying 
a two-dimensional Gaussian filter in the i = 1 ,3  directions, and a top-hat filter in the 
i = 2 direction (Moin & Kim 1982; Horiuti 1987), where i = 1,2 ,3 ,  respectively 
correspond to directions x, y and z, with x being the downstream coordinate, y the 
normal coordinate, and z the spanwise coordinate. Unfiltered variables are denoted 
by u, ,p ,  8 and SGS components by ~ : ~ ~ , p ~ ~ ~ ,  OSGs, i.e. ui = ai+ufGS, p = p+pSGS,  
8 = 8+eSGS, and occasionally, ui ( i  = 1,2,3) is respectively denoted by u, v, w. In  the 
DNS governing equations, filtered variables in (1)-(3) are replaced by the raw 
variables u, ,p ,8 ,  and 7ij and 738 are eliminated. The flow is driven by the mean 
pressure gradient, and all variables have been made dimensionless using the channel 
width ( H ) ,  the friction velocity (u,), and the friction scalar (O7),  unless otherwise 
stated. The Reynolds number Re is defined by u , H / v  ( v  is the kinematic viscosity), 
the length given in wall units is denoted by ( )+, and the Prandtl number Pr is set 
equal to 0.7. In  (1) and (3), 7$, and 73" are 

(4a) 

(4b) 
The first terms in the right-hand side of (4a) and (4b) are the Leonard terms 
explicitly calculated by applying the Gaussian filter in the x and z directions in the 
Fourier space. The next terms are the cross-terms, and the last ones the SGS 
Reynolds stresses and SGS scalar fluxes. The Bardina model (Bardina et al. 1980) 
approximates the second and last terms in 7$, as 

(5 )  
This model is based on a scale similarity hypothesis, having been adopted to 
approximate the second and last terms in 7: as 

(6) 
Since the Bardina model does not dissipate sufficient turbulent energy (Bardina et a2. 
1980; Piomelli et d .  1988 ; Horiuti 1989), the Smagorinsky model (Smagorinsky 1963) 
was used for the SGS Reynolds stresses, 

- 
7i, = (ti( - ti, - tii a,) + (tii U;GS + UfGS ti,) + U f G S  u;cs , 

= (tij e- ti, ti) + (ti, esGs + u ; ~ ~  e)  + 7. 

(tii U y  + UfGS a*) + UFGS ,;"s N a 6 ,  ti - 5 , .  fj 

(ti, esGs + qS S, + - tij e- E, 8. 
~ - - 

(7) SGS SGS = 1 SGS SGSS - LES 
Ui U j  $4 '% ij  Ve eij, 

atii ati 

ij - ax, ax, 
v,LES = (CsA)2[aei,ei,]i, e --+A, 

being added to ( 5 )  with the Smagorinsky constant Cs = 0.1. The SGS scalar flux in 
(4b) is approximated by, 

K , L ~ ~  = (C,, A)2 e,,];, 
S G S P G S  = - LES- a e  

axi ' Ui Ke 
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with C,, = 0.14. The same SGS model was used by Antonopoulos-Domis (1981) for 
LES of passive scalar diffusion in isotropic turbulence, where C,/C, were chosen 
equal to 0.23/0.32. It should be noted that a larger C, value has been used for 
isotropic turbulence than for channel flow (e.g. Clark et al. 1977 ; Horiuti 1991 a). In 
both the present study and Antonopoulos-Domis (1981), the C,,/C, ratio is x 1.4, 
giving an approximate SGS turbulent Prandtl number of 0.6. The lengthscale A in 
(7)-(8) is defined as (AxAYAz)~, with Ax,Ay,Az being the mesh sizes in the x, y,z 
directions, followed by multiplying these terms by the Van Driest damping function 
(Van Driest 1956; 1 -exp (-y+/A+), A+ = 26), which ensures that (7)-(8) are 
compatible with the boundary conditions for velocity and scalar fluctuations at the 
walls. In the RANS models, a slightly larger value of A, is normally adopted for the 
damping function of eddy diffusivity at Pr = 0.7 (NK 1988), with computed results 
in the present LES data being rather insensitive to small perturbations ofA,. For the 
sake of simplicity, the same A, value was adopted here, although the two-part model 
in Schumann (1975), Grotzbach & Schumann (1979), and Moin & Kim (1982) was not 
utilized. (This two-part model is further discussed in $3.) The validation of SGS 
models for passive-scalar diffusion LES was previously shown in Horiuti (1991 b). 

Periodic boundary conditions are imposed in the homogeneous directions (x and z) 
for velocity, pressure and scalar, with a no-slip boundary condition for velocity being 
imposed at  the walls. Two types of wall boundary conditions were chosen for the 
scalar, i.e. in Type I, 

e= 0 at the walls, (9a) 

Qo = 2 inside the channel region, (9b) 

with the scalar uniformly input within the fluid and then removed at both walls. In 
Type 11, 

e= 1 at the lower wall, (1Oa) 

8= 0 at the upper wall, (lob) 

Qo = 0. (10c) 

In this case, the scalar was input to the flow at one wall and removed at the other, 
with all Type I1 results being renormalized using 0, (94). This is too complex an 
experiment to be done for plane-channel-flow conditions of Type I, however, Type 
I is very similar to the heat-transfer models in the pipe flow when its circumference 
is uniformly heated (Hishida et al. 1986). The Type I1 boundary conditions were the 
same conditions used to combine free and forced convection between vertical parallel 
plates (Nakajima et al. 1980), and also used in the same flow configuration that Tsai, 
Voke & Leslie (1987) used for large eddy simulation. 

To numerically solve (1)-(3), a pseudospectral method using Fourier series 
expansion was used to approximate the spatial derivatives in the x- and z-directions, 
whereas for the y-direction a second-order central hite-difference method was used 
in LES, and for DNS, the Chebyshev polynomial expansion method. Aliasing errors 
were removed by using the %-rule, and time integration was done by combining the 
Adams-Bashforth and Crank-Nicolson methods (Horiuti 1987). Table 1 summarizes 
the experimental cases considered. The grid intervals in wall units in the x/z 
directionsforCases 1 and2were32/16,Cases3and4were64/32,andCaseBwas 18/9 (see 
Kim 1988). The initial grid point in the y-direction was located at 0.83 for Cases 1 and 
2, 1.8 for Cases 3 and 4, and 0.054 for Case 5. The time interval At was 0.0001 for LES 
and 0.00025 for DNS, being chosen so as to strictly adhere to the Courant number 
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FIGURE 1.  Mean streamwise velocity profile. Only the data in the region shown between the arrows 
was used for the least-squares fitting in $4. 

Scalar field 
Grid Numerical boundary 

Case parameters method Re condition 

1 128 x 129 x 128 LES 1280 I 
2 128 x 129 x 128 LES 1280 I1 
3 64 x 62 x 64 LES 1280 I 
4 64 x 62 x 64 LES 1280 I1 
5 128x 129x 128 DNS 360 I 

TABLE 1. Case specifications 

Computational domain size 

Streamwise Spanwise 

3.2H 1.6H 
3 . w  1.6H 
3 . w  1.6H 
3 . w  1.6H 
6.4H 3.w 

limitation. After a fully developed state was reached, integration times for ensemble 
averaging of statistical value were 2.5 for Cases 1,  3-5 and 1.0 for Case 2. A portion 
of the Case 1 and 2 turbulence statistics was reported in Horiuti (1988, 1990). 

Figure 1 shows the mean streamwise velocity profiles, and a fairly long region 
fitting the logarithmic law appears in Case 1. Both the von Karman constant (0.4) 
and a constant B (5.0) (Hinze 1959) in Case 1 correlate well with the experiments of 
Husaain & Reynolds (1975). B( - 5.5) in Case 5 is in good agreement with Kim et al. 
(1987). To ensure this computation was in equilibrium, the average Reynolds shear 
stress profile from Case 1 is shown in figure 2, i.e. a summation of the GS mean 
Reynolds stress ( u " ' ~ )  and the contribution of the Bardina model (GV-EE). The 
(z, 2)-plane and the time average are shown, and is a deviation off& from the (z, 2) -  

plane average. Figure 2 additionally shows the total stress in which the SGS terms 
and molecular stress are included. The total stress is balanced by the mean pressure 
gradient, thus indicating the computation is in statistical equilibrium. The 
contribution of the SGS Reynolds stress terms from Cases 1 and 3 are included in figure 
2, where it should be noticed that the sign and magnitude of these terms has changed, 
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FIQTJRE 2. Mean Reynolds shear stress : -, GS stress (a" v) + (iw-a6) from Caae 1 ; , total 
shear stress from Case 1 ; 0 ,  SGS terms from Case 1 (factored by 5.0) (v,""~ [(&lay) + (&/a~)]) ; + , 
SGS terms from Case 3 (factored by 5.0) (~,""~[[(atz/ilay) +(av/ar)]). 
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RQURE 3. Mean scalar profile. Only the data in the region shown between the arrows were used 
for the least-squares fitting in $4. 

indicating for Case 1 that most momentum and scalar transport contributions have 
been carried out by the GS part, with the SGS terms' contribution being less than 
2 % of the total Reynolds shear stress. On the other hand, their contribution in Case 
3 is very significant in the vicinity of the wall. Figure 3 shows the mean scalar profile 
from Cases 1 and 2, and the logarithmic profile is clearly evident. Figures 1 and 3 give 

14 FLM 238 
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FIUURE 4. Mean normal scalar flux from Case 1. -, GS flux ( g  e") + (4 6- iZ2 8> ; - - -, total 
scalar flux; ---, scalar source flux. 
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FIGURE 5. Correlation coefficient between the GS streamwise component fluctuations and the GS 
scalar fluctuations from Case 1 in comparison to the experimental data of Hishida et a2. (1986). 

the velocity and scalar profiles predicted for a linear sublayer, and both show an 
expected agreement. In Case 2, a significant deviation from the logarithmic profile 
exists in the central region of the channel, with Nakajims et al. (1980) and Tsai et al. 
(1987) obtaining similar results. When the cross-term models for T ~ ,  and < are not 
included in the LES computation, the von Karmrin constant for the obtained mean 



Two-equation models of turbulent passive-scalar diffusion 413 

FIQURE 6. (a )  Contour lines of &' in the (z, 2)-plane at y+ = 8.7 from Case 1. The hatch marks in the 
figure represent grid point distributions. (a) Contour lines of 8" in the (z, 2)-plane at y+ = 8.7 from 
Case 1. The hatch marks in the figure represent grid point distributions. 

scalar profile was 0.58, being too high when compared to experimental measurements 
(Gibson et al. 1982 ; Nagano & Hishida 1985). Contrastingly, when these models were 
included, the constant decreased to 0.46, considerably closer in agreement with 
experimental measurements. Figure 4 shows the normal components of scalar fluxes 
from Case 1, and it can be seen that the total scalar flux balances the volumetrical 
scalar source term which is uniformly distributed inside the channel. The correlation 
coefficient of the streamwise component of the GS velocity (a") and GS scalar (e") 
fluctuations from Case 1 is shown in figure 5, where the cross-term contributions are 
included in this calculation. The scalar field has a remarkably high correlation with 
the velocity field component, and this is confirmed in figure 6 (a,  b) by the streamwise 
velocity and scalar fluctuation contours in the (2, z)-plane. In figure 6 ( b )  the scalar 
field is similar to the streamwise velocity field, and both fields have the same streaky 
structure as that obtained by Kim (1988), thus depicting the flow process similarity 
between the dynamic and scalar fields. The correlation coefficient of GS normal 

14-2 
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FIGURE 7. Correlation coefficient between the GS normal component fluctuations and the GS scalar 
fluctuations from Case 1 in comparison to the experimental data of Hishida et al. (1986). 

velocity (v) and the GS scalar fluctuation (s") from Case 1 is shown in figure 7. Figures 
5 and 7 include the experimental measurements of Hishida et al. (1986), and are in 
overall agreement with these measurements except for the streamwise scalar flux 
correlation coefficient near the wall region which is believed to be caused by the 
difference in the Reynolds number used in the simulation and experiment. Figure 
8 (a)  shows the streamwise two-point correlation function 

R,, b-1; Y) = <q ( z + r , ,  y, 2) ic (2, y, Z)>/<G2 (2, y, z ) ) ,  

at y = 0.0135 ( y+ = 17.3). The observed correlation continues over a long distance in 
the downstream direction, and agrees with experimental results which indicate that 
the mean streamwise length of the streaks is greater than lo00 wall units 
(Blackwelder & Eckelmann 1979). Although the streamwise correlation has a non- 
zero value at  a large separation, the value is very small, thereby implying that the 
computational results have not been significantly distorted by using the periodic 
boundary condition in the streamwise direction. To check the dependence of these 
streamwise correlations on the size of the computational box in the streemwise 
direction (L,), L,  was increased to  4.8 H in Horiuti (1987), and these results showed 
similar tendencies to Case 1.  The spanwise two-point correlation functions R,, (r3 ; y) 
defined by 

(located at the same position as in figure 8a) ,  are shown in figure 8 ( b ) .  There is no 
negative peak in R,, ( r 3 ;  y) near r3 = 0 as found in Horiuti (1987), hence the mean 
streak spacing was estimated as w 140 (figure 6a)  by using the position of the first 
negative peak of R,, (r3 ; y) in figure 8 ( b ) ,  and being close to the generally accepted 
value of 100 (Kline et al. 1967). The mean spacing of streaks from Case 3 was 

R,, (r3; y) = <ic (x, Y, 2) q (2, y, z+r3))/<ic2 (2, Y> z ) ) ,  
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FIQIJRE 8. (a) Streamwise two-point correlation function R,, (rl; y) from Case 1. (b) Spanwise 
two-point correlation function R,, (r8 ; y) from Case 1. 

ra 

approximately 240, thus a considerable improvement was obtained in Case 1 .  The use 
of the periodic boundary condition and the computational box length in the spanwise 
direction are subsequently concluded to be adequate. 

3. Passive-scalar diffusion two-equation model 

variance ( e )  as representative variables, 
The two-equation model uses scalar variance (k,) and dissipation rate of scalar 

where 8' is a fluctuating scalar. The equations for the mean scalar 8, k, and €8 become 
in plane channel flow, 
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FIQURE 9(a ,  b). For caption see facing page. 

where u; denotes the ith component of fluctuating velocity, and D,, and D, are 
respectively the diffusion terms for the k, and e8 equations. These equations are then 
combined with the conventional k - e models for velocity fields (NK 1988). 

From the LES database described in $2, the quantities involved in the two- 
equation model were taken to be 

u= (a ) ,  0 = <@, U3a, b )  
(13c) 

k = I(<"' 2 Ut >+(a;-,m), (134  
(ua'u;) = (tq tq + (ai a* -?Ti E,)), 

aa aa 2 
8 = ( yfES ($ + $) + v e y )  + (Leonard & Bardina terms), (134 
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FIGURE 9.(a) Distribution of turbulent kinetic energy (k) from Case 1. ( b )  Distribution ,of 
dissipation rate of k (e) from Case 1. (c) Distribution of scalar variance root values (k;). 
Computational data from Cases 1 and 2, experimental data of Hishida et a2. (1986), experimental 
data of Bremhorst et al. (1970). ( d )  Distribution of dissipation rate of ke (ee) from Caae 1 are shown. 

where SGS contributions are not included in the evaluation of (u;u;), k, (u;6’), k,. 
The magnitude of the SGS turbulent energy and the SGS scalar fluctuations cannot 
be determined directly in the Smagorinsky model because one numerical constant 
which is independent of the Smagorinsky constant (Cs) must be properly chosen 
(Horiuti 1985), and it appears there is no systematic way to determine it using this 
model. The profiles of k, E ,  ki, €8 are shown in figure 9 ( a d ) ,  and the correlation of k 
(figure 9a)  and E (figure 9 b )  with experimental measurements is good. The data for 
k from Laufer (1951) is slightly less than other data, and kb from Case 1 shows 
agreement near the wall with the experimental measurement of Hishida et a,?. (1986), 
although the computational data is smaller in the channel’s central region (figure 9c). 
When compared to the experimental data of Bremhorst & Bullock (1970), the 
computational data is greater near the wall, while showing good agreement near the 
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channel centre. Grotzbach & Schumann (1979) investigated on the two-part model 
for the SGS scalar fluxes in plane channel flow, with the scalar being similarly input 
as in Case 1. Artificial boundary conditions designed to be consistent with the law of 
the wall were used to simulate the inner layer of the channel. The SGS scalar fluxes 
were split into a locally isotropic and inhomogeneous parts, i.e. 

where the different eddy diffusivities K,"/K: were used for the isotropic/inhomo- 
geneous parts. When the inhomogeneous part was neglected, higher scalar 
variances resulted, i.e. when the two-part model was not employed the maximum 
value of kj was x 2.7, whereas if the two-part model was used it was x 2.0. The use 
of the two-part model had no effect in the region away from the wall because no 
appreciable differences were found. The peak value of kb in Case 1 is approximately 
2.2, and is not significantly larger than either the experimental measurements by 
Hishida et al. (1986) or the numerical data by Grotzbach & Schumann (1979), thus 
when considering the uncertainties in the experimental measurements, the Case 1 
computational data appears to be in good agreement with these measurements. The 
correlation coefficients of scalar fluxes are also in good agreement with the 
experimental measurements (figures 5 and 7) ,  implying these scalar fluxes are well 
reproduced, and therefore leading to the two-part model not being used here. 
Furthermore, the mean scalar gradient of the two-part model directly influences the 
evaluation of SGS scalar fluxes, although this is surprising since the SGS scalar fluxes 
must be determined locally (Horiuti 1987). A significant difference in k, near the wall 
in Grotzbach & Schumann (1979) may be attributed to their artificial boundary 
condition. The distribution of kj from Case 2 is included in figure 9(c), where the 
slight asymmetry of scalar fluctuations around the centreline of the channel possibly 
indicates that the total averaging time in Case 2 is marginally sufficient. The 
magnitude of k) is close to that of Case 1 near the wall, whereas it is much larger in 
the central region of the channel. Since a mean scalar gradient is present in the 
channel central region in Case 2 (figure 3), scalar fluctuations occur there in contrast 
to Case 1. Nakajima et al. (1980) experiments measured similar distribution of scalar 
fluctuations (figure 9c), and Tsai et al. (1987) reproduced the same mean results by 
LES. 

The NK (1988)/Yoshizawa (1988) model solves (12a)-( 12c) with the aid of an eddy 
diffusivity concept, modelling the scalar fluxes as 

The first right-hand side term represents conventional isotropic eddy diffusivity ( K ~ ) ,  

whereas the second represents anisotropy of scalar fluxes. The profiles of turbulent 
Prandtl number (Pr,) from Cases 1 and 5, defined by Pr, = v,/K,, are shown in figure 
10, where eddy viscosity v, is defined as 

au 
<u', u;)  = - v, - . 

ax2 

To provide a comparison, the experimental measurements by Hishida et al. (1986), 
the computational data obtained by Nagano, Tagawa & Niimi (1988) using the two- 
equation model, and the RANS computational data using an empirical Pr, formula 
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FIQURE 10. Profiles of turbulent Prandtl number Pr,. Computational data from Cases 1 and 5, 
experimental data of Hishida et al. (1985), computational data of Nagano et al. (1988), and 
computational data of Wassel & Catton (1973) are shown. 

by Wassel & Catton (1973) are included. The Pr, profile from Case 1 is in fairly good 
agreement with Hishida et al. (1986), except in the channel central region. The profile 
from Case 5 correlates well with Case 1 in the wall vicinity, however, it  overshoots at 
y+ N 50 and gradually approaches % 0.7, having a similar distribution to the one 
found in the DNS data of Kim (1988). Using these results it is concluded that the 
reliability of LES/DNS databases is acceptable, thus model validation was 
conducted using the presented databases. 

In both N K  (1988) and Yoshizawa (1988), K, is expressed as 

ka 
K, = CK-rP, 

6 

where r is the ratio of the velocity dissipation to the scalar dissipation timescales, 

By solving the transport equations for k , s , k ,  and E*, and incorporating the 
representative variable r into the eddy diffusivity, the use of ad hoc assumptions for 
the turbulent Prandtl number Pr, can be avoided, while also including Prandtl 
number dependence. The importance of r in scalar diffusion is known, e.g. Elgobashi 
& Launder (1983). In  NK (1988), p was chosen as -4 based on both experimental 
measurements (Hishida et al. 1986) and the assumption that the appropriate scalar 
fluctuation timescale is an arithmetic mean of the dynamic and scalar timescales. 
Yoshizawa (1988) derived the exponent based on a direct interaction approximation 
(DIA) approach combined with scale parameter expansions. 

Leslie (1973) and Yoshieawa (1988) modelled anisotropic representation coefficient 
of scalar fluxes as 
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where Ct is a constant. Yoshizawa (1988) set p = -2 for (17). The terms in (19) are 
generated by the second-order terms in the scale parameter expansion (Yoshizawa 
1985), i.e. in the expansion products of the first-order velocity and scalar fluctuation 
terms. When (19) and (15) are combined in plane channel flow, only the second term 
remains for the streamwise component of scalar fluxes, while the first term remains 
for the normal component. 

4. Model assessment 
The two-equation model is assessed using the eddy diffusivity K,. Figure l l (a )  

shows four Case 1 eddy diffusivity profiles obtained from the LES database using 
(15), and for (17) with p = -4, p = -2, and p = 0.9, where quantities contained in 
the models were computed using the LES database of Case 1. In (17) the numerical 
constant C, and p are optimized using a least-squares fitting method, being 
simultaneously optimized at  0.9 and 0.055, respectively, and at optimization 
C, = 0.089 (p = -& and C, = 0.15 (p = -2).  A least-squares fitting was performed 
which excluded the wall vicinity and the central region of the channel. This was done 
in the wall region because the damping functions in the two-equation model are 
important ( § 5 ) ,  and the central region is also excluded because the departure from 
the logarithmic law is significant, turbulence is intermittent, and in the energy 
budget of Type I the diffusion terms are balanced by the dissipation terms. Hence 
the models of the diffusion terms are more important, and it is not necessary to 
evaluate the eddy diffusivity models in this region. Contrary to previous reports, p 
was found to be positive, and models using p = -+ or - 2 are quite inaccurate in the 
region where K, appreciably changes (y+ = 100 - 200) (figure l la).  When p = -2, a 
noticeably poor correlation occurs with the LES data with this region coinciding with 
the region where the timescale ratio r has large variations. Even though Yoshizawa 
(1988) demonstrated that his model for normal components of scalar fluxes had good 
agreement with the experimental measurements by Tavoularis & Corrsin (1981), the 
variation of r in these experiments was negligibly small. It is therefore felt that a fair 
evaluation of p must be done in flow regions where r changes substantially, because 
if the variation of r is negligibly small, the magnitude of the eddy diffusivity can be 
compensated for by adjusting the proportional coefficient in (17) C,. To determine 
dependence of p on the grid resolution in LES, the same evaluation was made in 
figure 11 ( b )  for Case 3, with the resulting optimized p and C, respectively being 0.5 
and 0.05 (C, = 0.071 (1, = - t )  and C, = 0.11 ( p  = -2)). There is no guarantee that 
these numerical results have not been distorted by the turbulence models 
incorporated into LES, thus the eddy diffusivities for Case 5 were obtained as shown 
in figure 11 (c). The optimized p / C ,  were 2.4/0.015 (C,  = 0.054 (p = -!j) and C, = 
0.125 (p = -2)). Cases 3 and 5 gave similar mean results as in Case 1, with a low 
correlation being found between the models using p = -2 or -4  and the numerical 
databases. Until now, the evaluation of p has been made using the normal scalar flux, 
although it may also be done via the streamwise scalar AR flux: 

Using (20) the best fit with the LES data was obtained in Case 1 with p x + 1. 
In Yoshizawa (1988) the overall agreement of (uie') with the experimental 
measurements by Tavoularis & Corrsin (1981) was demonstrated with p = -2, 
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however, a deviation occurred from the experimental measurements ( z /h  - 7.5 in 
figure 2, Yoshizawa 1988). This model’s marginal accuracy is also evident in the 
numerical results by Nagano et al. (1988), where the data was obtained by 
incorporating the equation (17) model (p = - 2) into the actual two-equation model 
computation. The distribution of Pr, in figure 10 shows a large dip near the wall, 
being absent from other results. The dependence of model performance on the 
method to input the scalar source is examined in Cases 2 and 4, with the eddy 
diffusivities from Case 2 shown in figure 12, thereby confirming the reduced 
performance of the p = -4 or -2 models with the LES data. The optimized p value 
in Case 2 was 3.0 with C, = 0.08 (C, = 0.11 (p = -4) and C, = 0.17 (p = -2)), and 
was similar to the Case 4 mean value. It is concluded that selecting p = 1 - 3 yields 
a much higher correlation with the LES/DNS databases, further noting that this 
conclusion is supported by Kasagi (private communication), who used plane channel 
flow DNS which utilized a different method to input the scalar source. 

Nagano et aZ. (1988) pointed out that p should approach -2 in the near-wall 
vicinity in order to achieve a correct limiting wall behaviour of scalar fluxes when the 
scalar is input in the same manner as in Types I and 11, and accordingly revised the 
model to set p equal to - 2. Since the statistical theory of Yoshizawa (1988) is invalid 
near the wall, the coincidence of the values determined by statistical theory and wall 
behaviour is rather accidental, and thus there is no definite reason to select a p that 
is away from the wall equal to one in the wall’s near vicinity. In order to apply the 
two-equation models to the simulations of passive-scalar diffusion which are accurate 
up to the wall, an eddy-diffusivity model with a correct wall-limiting behaviour is 
desirable. In heat transfer problems, it is well known that unless the correct wall- 
limiting behaviour is satisfied, the model provides inaccurate numerical results 
(Myong 1988). Subsequently, an eddy-diffusivity model which accounts for a smooth 
bridging between the two extreme cases of p - 1 and p = -2 must be developed. 
Furthermore, when the equation (17) model with p = 1.0 is incorporated into an 
actual computation, it was found that the computation is unstable, believed to be the 
result of a substantially smaller magnitude of eddy diffusivity in the central region 
of the channel. To counter these drawbacks, a modification is made on the eddy 
diffusivity within the framework of Yoshizawa (1985), being represented as 

where L denotes the wavenumber, w the reciprocal of the response timescale of the 
velocity field, w, the reciprocal of the response timescale of the scalar field, CT the 
modal energy, k, is a cutoff wavenumber 2n/Z, ( I ,  is the characteristic scalar length), 
and C, is a model constant. The determinations oft, I , ,  and adopted in Yoshizawa 
(1985) are not fixed, enabling several modifications, i.e. an intermittency factor may 
be incorporated into the modal energy, or the cutoff wavenumber may be given by 
blending the characteristic lengthscales for the velocity and scalar fields. These 
modifications resulted in slightly changing p .  It should be noted that the optimized 
p values varied for Cases 1-5 ( p  = 0.5 - 3), although all Cases clearly show that these 
values are positive in contrast to the negative values obtained in the previous 
models. The cause of these variations has not been clarified, but they may be related 
to either the intermittency factor in modal energy or the characteristic lengthscale, 
i.e. the intermittency factor which represents the turbulent eddy or coherent 
structure may be dependent on both the method in which the passive scalar field is 
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driven and also the Reynolds number. When the scalar field boundary condition was 
the same, the p values were close (0.9 (Case 1) and 0.5 (Case 3) for Type I, and 3.0 
(Cases 2 and 4) for Type 11), being slightly larger (2.4) when a low Reynolds number 
was used for Type I (Case 5). It appears that a systematic method to include the 
intermittency factor has not yet been developed, and thus this will be left to future 
work. It was found, however, that K, was essentially unaffected in the channel central 
region by incorporating the intermittency factor into the modal energy, i.e. the 
magnitude of K~ remained substantially small as shown in figure 11. The modification 
adopted here lets Wg be dependent on the ratio r of the timescales. In Yoshizawa 
(1979), a proportional relationship between o and is used, where a constant 
coefficient g is assumed, 

wg = go, w = G, t D, (22) 
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where C ,  is a model constant. In  the present study we is redefined as 

we = Car"@, (23) 

where C, is a model constant. When (23) is substituted into (21), K, is obtained, 

To make it easier to develop a model having the correct limiting wall behaviour, in 
(24) p is set equal to -2. When a is set to - 3, the r exponent in K, effectively becomes 
1 when r is small, and - 2 when r is large, providing a smooth bridging between these 
two exponents. Equation (24) was tested by comparing it with the LES data from 
Case 1 as shown in figure 13, where C,, C,, and a are respectively chosen as 0.22,0.5 
and -4. As a comparison, the distribution of eddy diffusivity for the p = -2 model 
(figure i l a )  is shown in figure 13. In the region y+ = 100 - 200, the poor correlation 
of this model is significantly improved, and also the instability found when using the 
p = + 1 model was prevented. 

5. Algebraic scalar flux model comparison 
Rogers et al. (1989 hereinafter referred to as RMR) thoroughly investigated the 

algebraic model for passive-scalar diffusion of Gibson & Launder (1976) using the 
DNS databases for homogeneous shear and channel flows, and reported an 
approximate alignment of the sum of the pressure-scalar gradient and velocity 
gradient-scalar gradient terms with the scalar flux vector itself. By combining the 
alignment of the time derivative terms with the scalar flux vector, RMR simplified 
the algebraic scalar flux model (AFM). In plane channel flow, their model becomes 

k a8 1 k2 auae 
<u; el> = c,- <u; u;> ----<u;,> --, 

€ ay c~sz aY aY 

where CD is a model constant which is introduced to represent a Prandtl number 
effect and the spatial variation of the timescale. By fitting (25) to the DNS data, 
RMR proposed 

where Re, is the turbulent Reynolds number defined by k2/ve.  In both the presented 
and RMR models, the basic timescale adopted in the eddy diffusivity for the normal 
scalar flux is k l s .  The representative energy scale selected in (24) is k, whereas (25b) 
is used for the normal component of turbulence fluctuations. The correction in the 
timescale in (24) is 

whereas in RMR (1989) it was C,. Notice that (26) and (27) are similar in functional 
form, although r is used in (27), whereas Re, is used in (26). In addition, their 
asymptotic behaviour is different, i.e. when Re, is very small, the effective Re, 



Two-equation models of turbulent passive-scalar diflusion 425 

- 
r 

1.4 - 

- 

1.2- 

8' 
6 
d 
e 
Q 
Q 
a 
b 

r" 
I -  I I 1 

0 200 400 600 
Y+ 

FIQURE 14. Profiles of timescale ratio r and turbulent Reynolds number Re, from Case 1. 

exponent in (26) becomes -0.748, and when Re, is very large, C,  becomes 18.0. In 
(22) the constant g was set equal to 1.6 to be consistent with the response function 
equation in Yoshizawa (1979). By integrating the response equation with respect to 
time ( O +  a), a constrained relation for w and og was obtained which consistently 
solved the equations, and by numerically solving this relation equation, g was 
determined, although (23) may not always satisfy this consistency requirement. In  
order to avoid the infrared divergence of the response equation (Leslie 1973), a 
modified geometric function c (k ,p ,  q)  was introduced by Yoshizawa (1978). The 
equation for the scalar response function was modified as in Yoshizawa (1979), and 
a value of g = 1.6 was selected based on this modified geometric function. The 
assumptions involved in deriving the modified geometric function and the uniqueness 
of the function, have not yet been clarified, thus it is believed that the introduction 
of g as a value other than 1.6 is possible. In practical applications, modifications as 
in (26) or (27) are necessary to explain real flow, but as RMR (1989) noted, basing 
C,  on r may violate the linearity and independence principles by Pope (1983). In  the 
LES database for plane channel flow, however, it was found that the profile of r from 
Case 1 is very close to that of Re, in the region y+ = 50 - 400 (figure 14), with r being 
asymptotically equal to 1.7 near the channel central region. Beguier, Dekeyser & 
Launder (1978) estimated this ratio using experimental measurements in the 
boundary layer on a heated flat plate, in the pipe flow, and in the wake of a heated 
cylinder. It was found in all cases that the ratio is nearly uniform, being x 2.0. The 
presented data is close to this estimate, although the slight downward trend of the 
distribution of r in Beguier et al. (1978) was not observed. The simulated Reynolds 
number may not be large enough to confirm this trend, but the similarity between 
r and Re, implies that at this Prandtl number the final C,  value for plane channel 
flow does not strongly depend on either r or Re, if the coefficients of (26) and (27) are 
properly selected. It was also revealed that the function C ,  is closely related to (23) 
for the response timescale relation of velocity and scalar fields. The similarity 
between r and Re, found here, however, may possibly depend on flow configurations 
since RMR (1989, p. 92) noted that for homogeneous shear flows, ' r  rapidly 
approaches a constant value whereas C,  continually increases '. Tests of similarities 
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between these values will be performed in the future using a variety of other flows, 
thereby enabling its dependence on the Prandtl number to be further investigated. 
The Prandtl number dependence is empirically incorporated by implicitly including 
Pr in the RMR model, whereas it is represented by the dependence of T on Pr in NK 
(1988) and Yoshizawa (1988). The turbulent Reynolds number peaked at  y+ - 350 
and decreased toward the channel centre (figure 14). A correction in the timescale in 
the eddy diffusivity should become asymptotically uniform near the central region 
of channel, yet when Re, is chosen as the variable this does not occur, implying that 
Re, may not be a feasible representative variable for the correction function in this 
region. When the Pope (1983) model was used, where linearity and independence 
principles were strictly adhered to, erroneous results were obtained, therefore the 
exclusion of r when defining CD may lower the practical applicability of this model. 

Anisotropic representation of the Reynolds stresses (u; uj) 

)+Cr3-- aulauLl ax, ax, 3 (28) 
+- c A"+- auau c,, -"+A- au,au auau, "I €, T1 ax, ax, 2 ( ax, ax, ax, ax, 

has been successfully used to give accurate predictions of anisotropic turbulence 
intensities, where CTl, C,, and C,, are the model constants (Nisizima & Yoshizawa 
1987; Speziale 1987; Rubinstein et al. 1990). By substituting (28) into (25a) the 
streamwise scalar flux (u; el) in plane channel flow is obtained, 

The first right-hand side term in (29) is the same as (20) except for the coefficient, 
thus a close relationship between anisotropic representation of scalar fluxes and AFM 
is apparent. If the two-equation model approach is used in place of more sophisticated 
algebraic models, the terms in (29) must be supplemented to express the anisotropy 
of scalar fluxes. Anisotropic representations in both (20) and the first term in (29) 
appears among second-order terms in the scale parameter expansions of Yoshizawa 
(1988), whereas the last term in (29) among fourth-order terms. Similarly, by 
inserting (28) into (25b), the normal scalar flux (uiel) is 

where the coefficient CT1-2C,, is usually positive (Horiuti 1990). The second term is 
an extra term incorporated into the eddy diffusivity, and appears in the third-order 
expansion terms in anisotropic representation. Higher-order expansion terms in 
anisotropic representation generate higher-order derivatives for the mean velocity 
and scalar, hence AFM can be characterized as a subset of these expansions, 
consisting of only first-order derivatives of mean velocity and scalar and their 
products. Incorporating higher-order differentials may not be practically feasible 
since this requires additional boundary conditions. The effect of the second term in 
(30) is shown in figure 15 for the normal scalar flux of Case 1. In NK (1988), the Van 
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Driest damping function (Van Driest 1956) was used to approximate the normal 
scalar flux combined with the eddy diffusivity of (17) (p = -!j), 

k2 ae 
6 aY 

(u; el) = - C,- r p  (1 - exp ( - y+/A+))2-, 

where C, is a model constant and A+ was selected equal to 30.5. When the damping 
function was not multiplied, i.e. when using 

ka at9 
(Uhel)  = -C,--TP- (p = -a), 

aY 
the flux profile showed a prohibitively large peak near the wall. The Van Driest 
damping function effectively suppressed this peak and gave a reasonably good 
correlation with the LES data. When third-order anisotropic representation of (30) 
was used, this large peak was suppressed as effectively as by the Van Driest damping 
function, except in close proximity to the wall, thereby indicating that third-order 
anisotropic representation may be used as an alternative method for empirical 
damping functions. In  figure 15, C,  in (30) was set equal to 6.0, and C,, - 2C,, was 
set equal to 0.016. The RMR model (equation (25b)) had good correlation with the 
LES data, although it was slightly higher at y+ - 25.0. Therefore, without 
introducing an empirical damping function, the RMR model provides an effective 
reduction of the scalar flux near the wall, being mostly attributed to choosing the 
normal shear stress as the representative energy scale for eddy diffusivity. Since C,  
in (26) does not affect this reduction, a more preferable energy scale for eddy 
diffusivity is the normal component of turbulent fluctuations rather than the total 
energy k. It should be noted that the evaluation of the RMR model in both the 
present study and in RMR (1989) was performed by inserting the normal shear stress 
profile obtained from LES/DNS databases into (25b). An accurate model to 
represent the normal shear stress must be provided for actual use of the model of 
(25b) ,  whereas the presented model of (30) is self-contained with regard to the normal 
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FIGURE 16. Distributions of model coefficients C,, and C,, obtained from (34) in Cam 1. 

shear stress. Both the NK (1988) model of (31) and the RMR model do not correctly 
satisfy the scalar flux wall-limiting behaviour, and in the future a two-equation 
model which combines (24) and (30) must be developed to account for this 
phenomenon. 

A final comparison to RMR is conducted using the pressurescalar gradient terms 
(Gibson 8z Launder 1976) 

The first term in the right-hand side models the ‘slow’ part of pressurescalar 
gradient terms, and the second right-hand side term models the ‘rapid ) part. RMR 
found that the pressurescalar gradient term is approximately aligned with the 
scalar flux vector itself, i.e. C,, was very small when the model of (33) was fitted to 
the DNS data. In plane channel flow, (33) becomes 

(344  

The distributions of CIT and C,, obtained by solving (34a) and (34b) are shown in 
figure 16, where k, 8,  U and the scalar fluxes and pressure-scalar gradient terms were 
obtained using the LES database of Case 1. The C,, value is very small except in the 
vicinity of the wall and the channel centre, and therefore the finding of RMR (1989) 
is confirmed. When the velocity gradienkscalar gradient terms 

- ( v + K ) ( - - )  au; ae. 
axj axj (35) 

are included in the right-hand side of (34)) the C,, and C,, distribution showed only 
a slight change from those in figure 16, except in the vicinity of the wall, thereby 
implying that the contribution of the velocity gradient-scalar gradient terms in (35) 
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is confined to the vicinity of the wall. By neglecting diffusion terms (note that 
convection terms disappear in plane channel flow), the governing equations for scalar 
fluxes become 

which provide alternative equations to determine C,, and C,,, 

(374 
l k  a 0  1 k2 auae 

(u', u;) -+ (1 - C,,) -- ( U i 2 )  -- , 
clT ' a Y  C:, c2 aY aY 

1 k  a 8  
(u; el)  = ( U i 2 )  -. 

'IT ' a Y  

(u; e l )  = 

(37 b)  

The C,, and C,, profiles from Case 1 obtained by solving (37a) and (37b) are shown 
in figure 17, with C,, and C,, being larger than in figure 16. An increase in the 
magnitude of C,, is especially significant. Both C,, and C,, show an almost flat 
distribution throughout the channel, indicating that they may be modelled as a 
constant. Although C,, shows a large deviation in the channel central region, it can 
still be modelled as a constant without causing a serious error because the magnitude 
of the scalar fluxes is small in this region. For comparison, the computational data 
by Rogers (private communication) using the DNS database for plane channel flow 
is included in figure 17, and in this data the Reynolds number was set at 360, similar 
to Case 5. In Launder (1975), C,, was set at 2.5 - 5.0 by fitting the model of (37) to 
the experimental measurements of Webster (1964), with the C,,  value in figures 16 
and 17 being well within this range. On the other hand, C,, is x - 1.0 in both the 
present study and Rogers (private communication), except in the proximity of the 
wall and the channel central region, whereas 0.5 has been commonly used following 
Launder (1975). Use of (37a) and (37b) results in a ratio of the streamwise to normal 
scalar flux of, 

<u', e l )  (u; u;> 1 - C2, k aU -- 
<u;ef) - (u;,) c,, E ay ' 
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Assuming equilibrium between the production and dissipation in the energy budget 
of the velocity field, (38) was rewritten by Launder (1975) as 

Using the experimental data of Champagne, Harris & Corrsin (1970) for 
(u ;u; ) / (u ;~)  and k/(u;  u;), and Webster's scalar flux ratio data for homogeneous 
shear flow, Launder (1975) concluded that C,, should be x 0.5. The scalar flux ratio 
in Webster (1964) was approximately - 1.1, whereas in the numerical data used here 
and in Rogers (private communication) the scalar flux ratio is approximately in the 
range -2.0 to -2.5, yielding C,, x - 1.0, and is in good agreement with the values in 
figure 17. An estimate of the positive C,, values can be obtained from the lower 
estimated ratio of scalar fluxes in Launder (1975), thus C,, is not believed to be a 
universal constant that is flow independent. It should be noted that in Launder 
(1975), the C,, estimation error also comes from the equilibrium assumption, i.e. the 
ratio of the production to the dissipation term is not exactly equal to 1.0 (Rogers, 
private communication), and hence it is evident that the choice of C,, x - 1.0 is 
inconsistent with the RMR model of (25). In fact, the values of <ui6') using this 
model are consistently smaller than the DNS data for plane channel flow in RMR 
(1989) (figures 12 and 13, RMR 1989). By setting C,, = - 1.0, the correlation to the 
DNS data can be significantly improved. When the diffusion terms were included in 
(37), C,, was reduced somewhat, and if accurate models for the diffusion terms are 
provided, C,, may be set to zero. 

6. Summary and conclusions 
A numerical assessment is made on the two-equation model for turbulent passive- 

scalar diffusion in plane channel flow using the databases derived from large-eddy 
and direct numerical simulations (LES/DNS), using up to 1283 grid points. In LES, 
the scale similarity model (Bardina et al. 1980) was used for the cross-correlation 
terms in the filtered NavierStokes equations and the transport equations of passive 
scalar. The reliability of the databases was established by comparing them with the 
experimental measurement of Hishida et al. (1986). These databases were used to 
evaluate the recent two-equation model of Nagano & Kim (1988), which is composed 
of k, B ,  ko and eo, and avoids previously used phenomenological assumptions for the 
turbulent Prandtl number by expressing eddy diffusivity using the timescale ratio of 
the dynamic and scalar fields. The difference in the exponent (p) of the timescale 
ratio determined in Nagano & Kim (1988) (1, = -&) and in the statistical theory of 
Yoshizawa (1988) ( p  = -2) was investigated, and it was clearly demonstrated that 
both models have a low correlation with the LES database, and also that selecting 
p - + 1 yields a much higher correlation. Dependence of the model performance on 
the method to input the scalar source was examined for all models using two types 
of scalar field boundary conditions in LES, together with fine and coarse grid 
resolutions. DNS was also conducted to confirm that the computed results were not 
distorted using LES turbulence models, yielding the same general conclusions for all 
experimental cases. To develop an eddy-diffusivity model which correctly satisfies 
the wall-limiting behaviour, a new model that smooths the bridging between the two 
extreme exponents of p = -2 and p - 1 is proposed, and was proven to be more 
numerically stable than when p is chosen equal to 1 throughout the channel. A 
critical comparison with the algebraic scalar flux model of Rogers et al. (1989) was 
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additionally conducted using these databases. A similarity of the correction functions 
in the eddy diffusivity in the proposed model and in RMR (1989) was apparent, with 
the feasible choice of the representative variable in this correction function being 
discussed. The importance of higher-order terms in anisotropic representation of 
scalar fluxes in the two-equation model was shown, and the relationship between 
anisotropic representation and AFM discussed. A possible use of third-order 
anisotropic representation terms as an alternative method for the reduction of eddy 
diffusivity near the wall instead of the conventional Van Driest damping function 
(Van Driest 1956) is suggested. Evaluation of the model coefficient for the 
pressure-scalar gradient term of Gibson & Launder (1976) was carried out, and 
higher correlation with the LES/DNS databases was obtained when the model 
constant for the ‘rapid’ part was chosen to be negative ( -  - l . O ) ,  contrary to 
previous results of Launder (1975). 

I am grateful to Dr M. M. Rogers for his valuable discussions and kindness in 
providing the unpublished data included in figure 17, and also for the valuable 
comments from Drs N. Kasagi and J. C. R. Hunt. 
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